林地保全に配慮した施業が特に必要 な国有林野の判別ツール整備事業

調査報告書

令和5年1月 林野庁

目次

1	事業の背景・目的	. 2
2	事業の実施内容	. 2
(1) 開到	山地災害防止タイプ(土砂流出・崩壊防備エリア)変更林小班抽出ツール 発	, . 3
a.	数値標高モデルデータ(DEM)のダウンロード、GeoTiff 形式変換	. 4
b.	窪地を埋めた DEM の作成	6
C.	河川次数(ストラー数)ラスターの作成	8
d.	上流域ラスター画像とベクター化	10
e.	土砂災害警戒区域の「土石流」の上流域抽出について	14
f.	崩壊土砂流出危険地区及び土石流区域の抽出数について	16
g.	崩壊土砂流出危険地区及び土石流区域の上流域抽出ツール	17
(2)	他オーバーレイ地区等の抽出について	18
(3)	山地災害防止タイプ(土砂流出・崩壊防備エリア)に変更する区域以外の)
	抽出	20
a.	上流域と重なる林小班の抽出	20
b.	山地災害防止(土砂流出・崩壊防備エリア)、自然維持、森林空間利用 タイプ林小班の除外について] 22
(4)	搬出方法を特定する必要のある林小班抽出ツール開発	25
a.	QGIS による傾斜角度算出、ラスター画像作成	26
b.	ポリゴン内の平均傾斜算出	27
C.	抽出した林小班の平均傾斜算出と 35 度以上抽出	28
d.	事業を計上している林小班を抽出	29
(5)	判別・抽出ツールの実証及びマニュアルの作成	30
3	まとめ	31

1 事業の背景・目的

人工林資源が充実し本格的な利用期を迎えている中で、森林の有する公益的 機能の発揮を図りつつ、森林資源の循環利用を推進していくためには、森林施 業の効率化と併せて、皆伐等の森林施業に伴う土砂の流出等のリスクの軽減を 図ることが重要であり、国有林においても林地保全に配慮した施業を推進して いく必要がある。

そのため、令和3年度に作成した「国有林における林地保全に配慮した施業 の手引き」において示した森林施業に伴う山地災害リスクへの対応の考え方を 踏まえ、伐採箇所や伐採方法の適否や、適切な搬出方法を特定すべき森林を簡 易に判別できるツール等を開発するとともに、その利用マニュアルの作成を行 うものとする。

3 事業の実施内容

実施内容の全体は、オープンソース GIS である QGIS 上で利用できる、下記 (1)から(5)のプラグインツールを作成することとする。利用する QGIS のバー ジョン及びツールを利用する PC の環境条件は以下の通りとする。

(i)利用する QGIS のバージョン

仕様上 QGIS-OSGeo4W-3.10.msi (QGIS バージョン 3.10) 以降の条件があるこ とから、上流域抽出、平均傾斜算出等がエラー無く実施できるバージョンで最 も最新の QGIS Desktop 3.16.16 with GRASS 7.8.5 を利用することとした。

(ii) ツールを利用する PC の環境条件

- ア.OS Windows10pro
- イ.CPU 種別 Intel Core i5、Core m5 のいずれか又は同等以上
- ウ. CPU クロック周波数 1コア当たり最大動作周波数が 2.0GHz 以上かつ 2 コア以上搭載
- エ.メインメモリ 8GB 以上
- オ. ストレージ 250GB 以上(SSD 又はフラッシュメモリ型)

また、実施内容全体の手順を以下に示した。なお、開発したツールの操作方法については、別冊の操作マニュアルに詳細に記述しているので、本報告書は、山地災害危険地区及び土砂災害警戒区域の GIS データから、どのような手順を踏んで搬出方法を特定する必要のある森林として判別するのかを明らかにすることを目的として作成するものである。

図1 実施内容全体の手順

(1)山地災害防止タイプ(土砂流出・崩壊防備エリア)変更林小班抽 出ツール開発

国有林の機能類型区分を「山地災害防止タイプ(土砂流出・崩壊防備エリア)」に変更することが適当と考えられる区域を判別するため、山地災害防止 タイプ(土砂流出・崩壊防備エリア)に変更する林小班を抽出するツールを開 発した。

まず、QGIS を利用して「山地災害危険地区(崩壊土砂流出危険地区)」や 「土砂災害警戒区域(土石流)」の上流域を抽出する方法を検討した。具体的 には図2の手順にて上流域を抽出する方法を検討し、同様の作業を自動的に実 施する QGIS のプラグインツールを開発した。

上流域抽出方法・手順

基盤地図情報ダウンロードサービスから 数値標高モデル(5mメッシュ※整備範囲外の 場合は10mメッシュ)を2次メッシュ単位でダ ウンロードして、GeoTIFF形式に変換

QGISのSAGAツールのFill Sinks (Wang & Liu) <u>※QGIS 3.22LTR以降は、SAGA GIS7.8.2の同じ</u> <u>ツールを利用</u> にて窪地を埋めたDEMを作成

QGISのSAGAツールのChannel network and drainage basins <u>※QGIS 3.22LTR以降は、SAGA</u> <u>GIS7.8.2のStrahler Orderツールを利用</u> にて河川 次数(ストラー数)ラスターを作成

QGISのSAGAツールのUpslope area ※QGIS 3.22LTR以降は、SAGA GIS7.8.2の同じツールを利用 にて上流域ラスターを作成⇒ベクター化

図2 上流域抽出方法·手順

a. 数値標高モデルデータ(DEM)のダウンロード、GeoTiff 形式変 換

本事業では、日本全国の国有林が対象であることから、全国整備済みの標高 モデル10mメッシュデータ(以下、10mDEM)を使用することで、全ての国有林を 網羅することができる。また、さらに精密な5mメッシュデータ(以下、 5mDEM)についても、近年整備が進み、国有林が多く占める山間部にも拡大して いる。そこで、上流域抽出に際しては、5mDEM が存在する場合には、5mDEM を使用して、5mDEM 整備対象外の場合のみ、10mDEM を使用する方法とす る。

基盤地図情報ダウンロードサービス

(https://fgd.gsi.go.jp/download/menu.php)のホームページにアクセスし、上流域を抽出したい地域を包含するメッシュ(図3の口枠)を選択して、パソコンの指定するフォルダに保存する。この際、ファイルは ZIP ファイルとして保存する。

きまた。 基盤地図情報 ダウンロー	ドサービ	2													<u>ログイン</u> 戻る	基金地图像制	サイトロ 地理	<u> </u>
基本项目 DEM	* Q例:	剱岳 / 金沢市	木ノ新保町 / 3	35度0分0秒 13	35度0分0秒 /	35.00 135.00) / 54SUE836	94920										
検索条件指定	情報	相因から	違択 ○ 深沢 ○ 気が	A-102-10	× /	533971	HUE HUE	533973	533974	533975	533976	533977	534070	#2.8 534071	534072	534073	534074	+
■ 5mメッシュ ■ 5A (航空レーザ用量) ■ 5B (写変測量) ■ 5C (写真測量)	12054	7		0.28		NUT	Canada Constantino	100 mm	Arance.	5020CC	Nin Bull	and and	878	- and	- Salara	me Contractor		-
 □ 10mメッシュ □ 10A (火山基本図の等面線) □ 10B (地形図の等面線) 	13864 0	~556865	553866	533867	5339602	533961	633962	80f	2.6033964	533965	533966	1933367 m	238080 -	534061 HIBN	534062	534063	534064 anin	53406
選択方法指定	13854	533855	533856	333857	533950	533951	533952	533953 Rectific	503954	10700A	533956 Roll	533957	534050	534051	534052	534053	534054	53405
 地図上で選択 部道府梁または市区町村で選択▼ メッシュ番号で選択▼ 	13844	533845	^{ФНБ} 533846	533847	533940	533941	5339426	8000 533943e 800	533944	**************************************	12 8858 1533946 10	953947	534040	534041	8×80 534042**	534043	534044 III4#	10.1 534045
選択リストに追加 選択リスト	13834	533835	533836	533837	1200 % 533930	533933	533932	533938	533934	533935	1	\$33937	534030	534031	Aun (534032	534033	534034	-
地図上の2次メッシュをクリックするか、「選択リストに達 加」ポタンをクリックするとリストに通加されます 534011: 川内	13824	533825	533826	533827	533920	533921	section 533922	533923	533924	533925~	533926		534026	534021	534022	534023	534024	
	12914	F22015	(177016 ⁸¹	- conort	572010		210cca	8800 X856	ราวอีรัส	AL	523016	\$ \$22015	574010	E24011	534010	24012		
	4	- MRH	WEINER U		diller	REFE	00000	8860 L	333314	Child and and and and and and and and and an	555910	6	- 101010 - 1071010	Sint Sint	Aller Con	m	-	
	13804	533805	533806	533807	533900	533901	533902 #@m	#119533903 #201	533904	\$33905	533906	\$533907	534000	534001	80781 -8 80781 -8	534003		
全て削除	13874 ⁸¹¹	^{6†} 523875	523876	anu523877	523970	523971	523972	523973	523974 523974	Les08975	523976	523977	524070 (524071	524072	\$24073		
	13864	(⁵²³⁸⁶⁵	523866 5.97	523867	юня 523960	523961			523964	жлин 523965	523966	523967	524060	524061	524062	524063		
		523855	523856	523857	523950	523951	1		523954	523955	523956	523957	524050	524051	524052			
	1 10 MM		\rightarrow	NAF -	(Maro)	-				1	\rightarrow	-	4	4	1	1		由土地理院

図3 5m メッシュ単位の標高データダウンロードサイトイメージ

次にダウンロードした ZIP ファイルに格納された XML 形式のデータを GeoTiff 形式の DEM に変換する。本事業では、共同事業体の株式会社 MIERUNE が開発した QGIS Python Plugins の「QuickDEM4JP」を使用する(図4参 照)。なお、使用する QGIS のバージョンは、QGIS Desktop 3.16.16 with GRASS 7.8.5 とし、ケーススタディ(試行)を実施した。

QGISのメニュー_プラグイントプラグインの管理とインストールをクリックして、画面左の「すべて」を選択して、"QuickDEM4JP "を入力し、ダウンロードする。インストールが完了すると、画面に「XML」と書かれたアイコンが出現するので、それをクリックして、入力設定のDEMにダウンロードしたDEMのZIPファイルを選択し、出力設定の形式としてGeoTiffにチェック☑して、出力先としてはダウンロードデータのあるフォルダ等を選択する。「OK」ボタンをクリックすると、QGIS画面左側のレイヤパネルに「output」として変換されたラスター画像が追加される。今回は5mDEMを利用する。なお、農林水産省では、セキュリティ対策で、ダウンロードができないため、前述の方法で、ZIPファイルからインストールする方法を採用することとした。

QuickD	EM4JP
入力設定	
形式	「xml' または 'xml'を含む'zip' ・
DEM	•••
出力設定	
形式	✔ GeoTiff 📃 Terrain RGB
出力先	•••
CRS	EPSG:4326 - WGS 84
▼ アルゴ	リズムの終了後、QGIS上で出力ファイルを開く
	OK キャンセル

図4 「QuickDEM4JP」立ち上げ時のイメージ

b. 窪地を埋めた DEM の作成

群馬県みなかみ町の2次メッシュ『553817』に含まれる国有林の崩壊土砂流 出危険地区をケーススタディとして上流域抽出方法を検討した。崩壊土砂流出 危険地区を含む山地災害危険地区のGISでは、林野庁提供データを使用した。

プロジェクトの CRS(参照座標系)は、投影座標系とし、今回は群馬県を対 象としたので、JDG2000/平面直角座標系IX(9)系とした。

"QuickDEM4JP" にて GeoTiff 画像に変換したデータに対して、メニューの 「プロセシング」⇒「ツールボックス」をクリック(図5左図)、

SAGAトTerrain Analysis-HydrologyトFill Sinks(wang&liu)をクリックし、図5 の右図の通りチェックして実行する。⇒窪地を埋めた5mDEMの「FILLED」ファ イルがレイヤ領域に追加される(図6)。

😡 ラスタ解析			
🔇 ラスタ地形解	析		
🝳 レイヤツール			
🔇 地図製作			
🔇 内挿			
🚡 GDAL			
GRASS			
SAGA			
 Climate tool 	5		
Georeferenci	ing		
Geostatistics			
Image analys	sis		
 Projections a 	and Transformations		
Raster analys	sis		
Raster calcul Baster calcul	us		
 Raster creation Raster filter 	on tools		
 Raster tools 			
 Raster visual 	ization		
 Simulation 			
▶ Table tools			
 Terrain Analy 	/sis - Channels		
 Terrain Analy 	/sis - Hydrology		
🛞 Burn	stream network into dem		
중 Catc	hment area		
🔆 Catc	hment area (flow tracing)		
🔆 Catc	hment area (recursive)		
Cell	balance		
K Eday	contamination		
	inke		
	inika inika (wana 9) (ili)		
Till s	inks (wang oc ilu)		
See Fill s	inks xxl (wang & liu)		
See Flat	detection		
See Flow	path length		
S Flow	width and specific catchmer	nt area	
Fill sinks (wang & liu)			×
パラメーター ログ			
DEM			
VOUTPUT [EPSG:32654	1		•
inimum Slope [Degree]			
0.010000			\$
illed DEM			
一時ファイルへの保存]			
✔ アルゴリズムの実行後に出	カファイルを開く		
Flow Directions			
[一時ファイルへの保存]			
アルゴリズムの実行後に出	カファイルを開く		
vatershed Basins			
一時ファイルへの保存]			
アルゴリズムの実行後に出	カファイルを開く		
	0%		キャンセル

図5 ツール選択(左図)とパラメーター設定画面(右図)

図6 窪地を埋めた 5mDEM (群馬県みなかみ町)

c. 河川次数(ストラー数) ラスターの作成

次に窪地を埋めた 5mDEM の「FILLED」ファイルを使用して、上流域抽出に必要な河川ネットワークとしての河川次数ラスターを作成する。今回は、最も一般的な河川の順位付けの方法であるストラー(Strahler)の方法を使用する。 なお、順位付けとは、川の本流と支流を区別するために、ひとつひとつの流路 にランク付けを行うことで、このランクのことを「流路次数(Stream Order)」 と呼ぶ。水源から発生する支流を持たない細い流路を1次、1次と1次の流路 が合流すると2次...といった形で下流へすすむにつれて、次々と流路が合流 していく過程にて、その次数が連続的に大きくなる。下記の図7の通り、今回 のストラー(Strahler)の方法では、合流の際の次数が大きい方が合流後の次 数となること、同じ次数の場合は次の次数(例:同じ1次の場合、2次とな る)になることが特徴となっている。

「FILLED」された GeoTiff 画像に対して、SAGAトTerrain Analysis-Channels トChannel network and drainage basins をクリックして、下記の画像の通りチ ェックして実行する。⇒Strahler の方法による河川の順位付け:河川次数ラ スター「ORDER」(ラスター)と「SEGMENT」(ライン)ファイルがレイヤ領域 に追加される。

図8にツール画面、図9に河川次数ラスター画像を示す。

	Q Channel network and drainage basins		×
	パラメーター ログ		
	Elevation		
☑ 内抽	FILLED [EPSG:32654]		
S CDAL	Threshold		
COM GDAL	5		\$
🖗 GRASS	Flow Direction		
😤 SAGA			
 Climate tools 	アルコリスムの実行後に出力ファイルを開く Elem Compactivity		
 Constant tools 			
Georeferencing	アルゴリズムの実行後に出力ファイルを聞く		
Geostatistics	Strahler Order		
Image analysis	[一時ファイルへの保存]		
Projections and Transformations	▼ アルゴリズムの実行後に出力ファイルを開く		
Raster analysis	Drainage Basins		
Raster calculus	[一時ファイルへの保存]		
Raster creation tools	アルゴリズムの実行後に出力ファイルを開く		
Parter filter			
 Nastel littel Destaste de 	マリアルゴリズムの事行後に出力ファイルを開く		
Raster tools	Drainage Basins		
Raster visualization	[一時ファイルへの保存]		
Simulation	アルゴリズムの実行後に出力ファイルを開く		
Table tools	Junctions		
 Terrain Analysis - Channels 	[一時ファイルへの保存]		
S Channel network	アルゴリズムの実行後に出力ファイルを聞く		
Schannel network and drainage basins			
S Overland flow distance to channel network	0%		キャンセル
	バッチプロセスで実行	実行	閉じる
Strahler order			

図8 ツール選択(左図)とパラメーター設定画面(右図)

図9 作成した河川次数(ストラー数)ラスター

d. 上流域ラスター画像とベクター化

林野庁から提供された「崩壊土砂流出危険地区」のラインデータをレイヤ領 域に追加する⇒作成する危険地区ラインの上流部を、河川次数ラスターの 「ORDER」(ラスター)と「SEGMENT」(ライン)ファイル画像を参考に拡大し て、「地物情報表示」⇒右クリックして、下部の座標の数値をコピーして、図 10の通りにメモ帳にペーストする。

図 10 河川次数ラスターの上流部と「崩壊土砂流出危険地区」との合流部座標

SAGAトTerrain Analysis-HydrologyトUpslope area をクリックし、下記の画像の通り入力、ファイル選択して実行する。⇒Target Xには、メモ帳の最初の数

値をコピー&ペースト、Target Yには、メモ帳の次の行の数値をコピペする。 また、Elevationには、5の「FILLED」ファイル選択、Methodには、図 11 の 通り、[0]Determinsti 8 を選択する。

▶ 🎡 GRASS	Q Upslope area		×
👻 😪 SAGA			
Climate tools	パラメーター ログ		
Geostatistics	Target Area [optional]		
Image analysis			- ···
 Projections and Transformations 	Target X coordinate		
Raster analysis			
Raster creation tools	138.385749		421 -
 Raster filter 	Target Y coordinate		
 Raster tools 	36.816025		
 Kaster visualization Simulation 	Elevation		
Table tools	FILLED [EPSG:32654]		
Terrain Analysis - Channels	Sink Routes [optional]		
Burn stream network into dem			.
Catchment area	Maked		
Catchment area (flow tracing)	Method		
S Catchment area (recursive)	L0] Deterministic 8		•
🔆 Cell balance	Convergence		
S Edge contamination	1.100000		\$
S Fill sinks	Upslope Area		
Fill sinks (wang & liu)	[一時ファイルへの保存]		
Fill sinks xxl (wang & liu)	マリブリブルの実行後に出力つっていた限/		
S Flow path longth			
Flow width and specific catchment area			
I ake food			
S Ls factor			
S Ls-factor, field based			
S Maximum flow path length			
S Paramemelton ruggedness number			
🚱 Saga wetness index			
Sink drainage route detection			
🚱 Sink removal			
Slope length			
Slope limited flow accumulation			
Stream power index	0%		キャンセル
Tci low	No.110477726	第 行	PHEA
Topographic wetness index (twi)	/////uc/cmil-	Z 11	DHUS
🏷 Upslope area			

図 11 上流部抽出ツールの選択とパラメータ入力

前述の SAGAトTerrain Analysis-HydrologyトUpslope area により、ラスター 画像の「AREA」ファイルがレイヤ領域に追加される⇒メニューのラスタト変換ト ラスタのベクトル化をクリックして、そのまま実行する。⇒河川次数ラスター の「OUTPUT」のベクトルファイルが追加される⇒右クリック__編集モードクリ ック__右クリック__属性テーブルを開く⇒属性テーブルの「DN」に数値がゼロ (0)の一番右の数値カラムを左クリックして、メニューのゴミ箱をクリック して削除する。⇒編集を終了して保存する⇒上流域のポリゴンデータが残る。 ⇒プロパティにて、塗りつぶしを無くして見やすくする。図 12 に作成した 「崩壊土砂流出危険地区(赤ライン)」の上流域ポリゴン(青ラインポリゴ ン)を示した。

図 12 作成した「崩壊土砂流出危険地区」の上流域ポリゴン(青ラインポリゴン)

図12の上流域は、一見、正しく上流域全体を抽出しているように見える が、図13の通り、崩壊土砂流出危険地区のGISデータ(赤色ライン)に平行 して抽出されるはずの流路ラインデータ「SEGMENT」(黄色ライン)が連続し てつながっていないため、上流域抽出の起点となる点(赤色ラインと青色ライ ンとの交点)が上流域と異なる点を下流部を選択しまい、求めたい上流域が抽 出できない。そこで、ツール開発では、図13のように、流路ラインが粗い場 合は、微細な流路ラインまで抽出することができる閾値選定があり、それを変 更して再度抽出できるような対応とした。

図 13 下流域の上流部した抽出できないケース

図 14 崩壊土砂流出危険地区ライン上流部に流路ラインデータが無い場合

また、図 14 の通り、崩壊土砂流出危険地区ライン上流部先端と流路ライン データが別方向に離れて、崩壊土砂流出危険地区ライン上流部先端部分に流路 ラインデータが抽出できなかった場合も、誤って、右側の流路ラインデータと の交点付近を起点として上流域抽出を実施してしまう可能性があるため、微細 な流路ラインまで抽出することができる閾値選定の変更にて対応することとし た。

さらに、図 15 のように、崩壊土砂流出危険地区ライン上流部先端と流路ラ インデータが離れて並行している場合は、下流部から上流域を抽出する場合が あるため、崩壊土砂流出危険地区ラインにバッファを設定して、そのバッファ 内に含まれる流路ラインデータを起点として上流域抽出できるように、ツール では設定することとした。

図 15 崩壊土砂流出危険地区ライン上流部と流路ラインデータが離れた場合

e. 土砂災害警戒区域の「土石流」の上流域抽出について

土石流においても、崩壊土砂流出危険地区と同様の方法にて、5mDEMのデー タから作成した河川次数ラスター(ORDER)及び流路ラインデータにて上流域 抽出は可能である。しかし、図16から18に示した通り、上流域抽出の起点と なる土石流ポリゴンデータと流路ラインデータとの交点の位置関係は3パター ンあることが判明し、それぞれの場合の対応について定義して、ツール開発を 行った。土石流のGISデータは、国土数値情報ダウンロードサービスサイト (https://nlftp.mlit.go.jp/ksj/)から、2. 政策区域⇒災害・防災⇒土砂災 害計画区域(ポリゴン)(ライン)からダウンロードして入手した。また、土 石流、地すべり、急傾斜地の崩壊の区分は、属性名「現象の種類 (A33_001)」の現象種別コードから判別した(1:急傾斜地の崩壊、2:土石 流、3:地すべり)。

・「土砂災害警戒区域(指定済)」の先端に「土砂災害特別警戒区域(指定済)」 があり、Channnels ラインと交差しているケース ⇒ 交差点を起点として上流 域抽出する。

図 16 特別区域があり流路ラインデータと交差していているケース

「土砂災害特別警戒区域(指定済)」はあるが、Channnels ラインと交差しない

ケース ⇒「土砂災害特別警戒区域(指定済)」の外周ライン(土砂災害計画区 域)に最も近接する Channnels ラインとの交点を起点として上流域抽出する。

図 17 特別区域があるが流路ラインデータと交差していないケース

・「土砂災害警戒区域(指定済)」の先端に「土砂災害特別警戒区域(指定済)」 がないケース⇒「土砂災害警戒区域(指定済)」の外周ラインと交差する Channnels ラインの交点の中で、最も標高の高い交点を起点として上流域抽出 する。

図 18 特別区域が無く流路ラインデータとの交差が複数あるケース

f. 崩壊土砂流出危険地区及び土石流区域の抽出数について

表1に示した通り、国有林内の崩壊土砂流出危険地区は、アイオーネイチャ ーラボ株式会社の集計によると全国で6,754 地区となり、北海道が最も多くなっている。また、同様に国有林内の土石流区域は、全国8,571 区域となり、広 島県が最も多くなっている。なお、崩壊土砂流出危険地区と土石流区域は、重 なっているケースもあり、総数は 15,325 地区・区域よりやや少ないと考えら れる(北海道における国有林内の崩壊土砂流出危険地区と土石流区域が重なっ ている地域は 136 件あり)。いずれにしても、地区・区域数が多く、1 回の操 作・手順で上流域が抽出できないケース等が想定されることから、全数もしく はサンプリングチェックにより、操作・手順のパターンを調査して、全地区・ 区域にて対応可能なツール開発を目指すこととした。

L	山地災害危降	険地区−崩 増	【土砂流出危	1険地区(国有林)	内)	土砂災	吉 警戒区域	-土石流(国	有林内)
都道府県 名①	崩壊土砂 流出危険 地区数	都道府県 名②	崩壊土砂 流出危険 地区数	※参考 北海道振興局 別集計	崩壊土砂流 出危険地区 数	都道府県 名①	土石流区 域数	都道府県 名②	土石流区 域数
北海道	1,785	滋賀県	34	空知	86	北海道	841	滋賀県	116
青森県	381	京都府	59	石狩	64	青森県	300	京都府	84
岩手県	237	大阪府	11	後志	64	岩手県	442	大阪府	8
宮城県	177	兵庫県	75	胆振	79	宮城県	332	兵庫県	170
秋田県	282	奈良県	26	日高	112	秋田県	239	奈良県	12
山形県	148	和歌山県	64	渡島	128	山形県	180	和歌山県	79
福島県	156	鳥取県	60	檜山	239	福島県	550	鳥取県	25
茨城県	8	島根県	101	上川	457	茨城県	145	島根県	90
栃木県	78	岡山県	42	留萌	146	栃木県	304	岡山県	87
群馬県	125	広島県	185	宗谷	80	群馬県	420	広島県	880
埼玉県	8	山口県	21	オホーツク	108	埼玉県	0	山口県	53
千葉県	0	徳島県	7	十勝	135	千葉県	6	徳島県	1
東京都	6	香川県	69	釧路	74	東京都	95	香川県	89
神奈川県	8	愛媛県	41	根室	13	神奈川県	26	愛媛県	36
新潟県	96	高知県	152			新潟県	176	高知県	80
富山県	57	福岡県	124			富山県	7	福岡県	273
石川県	16	佐賀県	40			石川県	0	佐賀県	171
福井県	121	長崎県	43			福井県	24	長崎県	95
山梨県	6	熊本県	83			山梨県	15	熊本県	171
長野県	882	大分県	75			長野県	569	大分県	117
岐阜県	355	宮崎県	125			岐阜県	71	宮崎県	374
静岡県	81	鹿児島県	139			静岡県	80	鹿児島県	626
愛知県	126	沖縄県	0			愛知県	70	沖縄県	3
三重県	39	合計	6,754			三重県	39	合計	8,571

表1 上流域抽出可能性のある崩壊土砂流出危険地区数及び土石流区域数

注1)山地災害危険地区-崩壊土砂流出危険地区(国有林内)は、林野庁各森林管理局ホームページから抜粋、森林管理局ヒアリング、北海道振興局別は振興局ポリゴン利用して算出。

注2)土砂災害警戒区域-土石流(国有林内)は、国土数値情報から、①土砂災害警戒区域データダウンロード⇒土石流のみ抽 出、②国有林野データをダウンロードして、両者から国有林内の土石流区域を抽出、算出。

g. 崩壊土砂流出危険地区及び土石流区域の上流域抽出ツール

開発したツールの崩壊土砂流出危険地区及び土石流区域の上流域抽出ツールの処理画面イメージを図 19 に示した。

Q 情報のプロジェクトー QGB	а (Алар 4766 4-66-30 Мена) Такула Алар
<pre>% % % % % % %</pre>	● 國•월•월•특• []] [] [] [] [] [] [] [] [
🚹 🗟 苯 🦂 🔤 🕫 (2000-1-00)	8
7597 88 🖫 😋 🍸 🗊 🗿	E HUISE HAR AND A FIND A STANDARS
☆ お気に入り ・ 団 空間プックマーク ・ ② ホーム	
• E CF	
•	上本期抽屉 山地区面积止分元需要95区制油屉 新出示当时电学5-6面向544/时抽屉 印刷1-1791 1/731
ee GeoPackage	DEM OWDers Winsesr/Deals top Memory annum/security 2001/7, DDMS11ff @ "
L14 88	
	Lid把完善思想是CEI服生的法出版是地区 Finianto,shinrikanskadoatadinadaakonsulminoosisystakulaine @
V • Fza	/1077 5 💼 m
 ✓ — houkai □ — 募集土砂湾出意牌地区(ライン) 	Ante 4
✓ — <u>SEGMENTS</u>	
-2	○ ±地次普響相反射(生石和)
* 🗹 💆 dem_filled_sinks 🖂	18年3-1963年(18年3-0月 新建 · · ·
439.534 1924.3	○ 推定# #30
- 🗹 💕 dem	
1924.3	1/E
	処理連邦
	出力79-76 {O'WilewsVinasaw/Deaktop/demo.gu/nuk/autor/UWI微生的法型/ABMEZ上其被 ale
	ALL SET FURTHER ALL STREAMENT
Q. 検索(Ck1+8)	<u></u>

図 19 上流部抽出ツールの処理画面

(2) 他オーバーレイ地区等の抽出について

林小班は、林野庁貸与用林小班区画データ(shp 形式)を使用する。対象は 群馬県としてケーススタディ(試行)を実施した。

林野庁から提供された「山地災害危険地区」の「山腹崩壊危険地区」と「地 すべり危険地区」のポリゴンデータ、国土数値情報_2. 政策区域_災害・防災_ 土砂災害計画区域のダウンロードサイトから、「急傾斜地の崩壊」と「地すべ り」のポリゴンデータを QGIS で重ねて表示し、メニューのベクタ▶調査ツール ▶場所により選択▶交わる(intersect)チェックによりの「山腹崩壊危険地 区」、「地すべり危険地区」、「急傾斜地の崩壊」、「地すべり」ポリゴンと 交わる林小班を抽出する。

ケーススタディ(試行)として、図20に土砂災害警戒区域の「急傾斜地の 崩壊」、「地すべり」ポリゴンデータと林小班を重ねたものを示す。国有林と 重なっている地域も複数あることがわかる。

次にメニューのベクタト調査ツールト場所により選択ト交わる(intersect)チェックにより土砂災害警戒区域の「急傾斜地の崩壊」、「地すべり」のポリゴンと交わる林小班を自動的に抽出した結果が図 21 となる。

なおツールでは、(1)で抽出した崩壊土砂流出危険地区及び土石流の上流域 と合わせて、「山腹崩壊危険地区」と「地すべり危険地区」、「急傾斜地の崩 壊」と「地すべり」を、国有林の林小班と自動的にオーバーレイする機能を有 するものとした。

図 20 土砂災害警戒区域の「急傾斜地の崩壊」、「地すべり」ポリゴンデータ と林小班

図 21 土砂災害警戒区域の「急傾斜地の崩壊」、「地すべり」のポリゴンと交わる林小班(茶色)

(3)山地災害防止タイプ(土砂流出・崩壊防備エリア)に変更する区 域以外の抽出

a. 上流域と重なる林小班の抽出

(1)で作成した上流域と重なる国有林の林小班を抽出するために、QGISで重ねて表示し、メニューのベクタト調査ツールト場所により選択ト交わる

(intersect) チェックにより上流域のポリゴンと交わる林小班を自動的に抽 出した結果が図 22 となる。上流域の青ラインと、林小班の境界(黒ライン) とのずれが生じることから、少しでも重なると、本来であれば範囲外と判断さ れる林小班が抽出されてしまう結果となる。そこで、メニューの「地物の選択 (シングルクリックによる地物選択)」を使用して、Ctrl キーを押しながら、 上流域と重なる林小班を抽出した結果を図 23 に示した。この選択された林小 班のみのファイルを作成するために、レイヤ領域の林小班を右クリックトエク スポートト選択地物の保存を実施することで、上流域と重なる林小班の抽出が できる。なお、ツール開発では 10%以上重なる林小班のみ抽出する方法で、図 23 と同様の結果が得られるように実装した。

図 22 上流域のポリゴンと交わる林小班の抽出結果

図23 境界線上が一部重なる林小班を選択外とし結果(ツール同様結果)

b. 山地災害防止(土砂流出・崩壊防備エリア)、自然維持、森林空間利用タイプ林小班の除外について

上記 a で抽出した上流域と重なる林小班及び(2)で抽出した「山地災害危険 地区(山腹崩壊危険地区、地すべり危険地区)」や「土砂災害警戒区域(急傾 斜地、地すべり)」と重なる林小班から、山地災害防止(土砂流出・崩壊防備 エリア)、自然維持、森林空間利用の3タイプの林小班を抽出して除外する。

「崩壊土砂流出危険地区」の上流域1か所と上記(2)で抽出した土砂災害警 戒区域の「急傾斜地の崩壊」、「地すべり」のポリゴンと交わる林小班の2つ のポリゴンデータの属性データを呼び出して、それぞれの属性データの機能類 型タイプが入力されている列の中から、快適環境形成、水源涵養の2タイプを 選択し(メニューの編集▶選択▶式による地物選択)、それぞれのレイヤを右ク リック▶エクスポート▶選択地物の保存を実施することで、山地災害防止(土砂 流出・崩壊防備エリア)、自然維持、森林空間利用タイプが除去された林小班 ファイルを作成することができる。なお、今回の試行では、快適環境形成タイ プは含まれておらず、図24に示すように、水源涵養タイプのみとなった。な お、図24に右下エリアに示した通り、タイプ入力されていない"NULL"があ ることから、これらの扱いについては、林野庁と協議する。

これらにより残された『快適環境形成タイプ』と『水源環境タイプ』の林小 班については、(4)により、山地災害防止タイプ(土砂流出・崩壊防備エリ ア)の全ての国有林林小班とともに、平均傾斜を算出する対象となるととも に、国有林の機能類型区分を「山地災害防止タイプ(土砂流出・崩壊防備エリ ア)」に変更することが適当と考えられる区域候補となる。

また、図 23 で示した崩壊土砂流出危険地区の上流域と重なる林小班の機能 類型は、全て山地災害防止タイプ(土砂流出・崩壊防備エリア)となり、 (2)により平均傾斜を算出する対象に含まれることになる。

図 24 土砂災害警戒区域の地すべりと急傾斜と重なる水源涵養タイプの抽出結 果(黄色)

Q kokuyurin_kyukeisya_jisuberi — QGIS式による選択			×
式関数エディタ			
	Q 検索	値を表示 グル ー	ೆ field
"A45_026" = '水源涵養' = + - / * ^ () '\+' 地物 [0030000000000000000000000000000000000	#bc A45_010 #bc A45_011 12 A45_012 #bc A45_013 #bc A45_013 #bc A45_013 #bc A45_011 #bc A45_013 #bc A45_011 #bc A45_012 #bc A45_021 #bc A45_022 #bc A45_022 #bc A45_025 #bc A45_026 #bc A45_027 #bc A45_029 #bc A45_029 #bc A45_030 #bc A45_032 #bc A45_032 #bc A45_033 #bc A45_033	 ダブルレ ます。 コンテキ 閉(には 注意 レイヤカ WFSレん。 値 Q NULL 山地炎 森林空 水源涵 	リックしてフィールド名を式の文字列に3自加し ストメニューのサンブル値読み3込みオプションを、 、フィールド名を右クリックします。 実際に挿入される前(クエリの生成時)には、 (ヤからの値読み3込みはサポートされていませ 検索 全ユニーク 10個のサンブル NULL] 書防止(土砂) 間利用 養
(تارم		地物にズ	-ム ⊱ 地物を選択 👻 月じる(©)

図 25 快適環境形成、水源環境タイプの選択方法(※本試行では水源涵養の み)

上記で提案した方法は、ケーススタディとして対象とした複数の林小班に て、(1)から(3)までを確認することが可能であるとともに、事業を計画してい る等の特定の林小班に対象を限定した場合にも、(1)~(3)の確認が可能であっ た。そこで、他に最適な方法が無いかどうかについて、十分に検討した上で、 最も精度の高い方法を見出し、①~③までの一連の作業が可能なツールを開発 した。

さらに、ツールは、担当者が業務で使用しているパーソナルコンピュータ等 にインストールし、既存データ等を入力することにより、自動的に判別・抽出 結果の図面等が入手できる機能を最低限の仕様として開発した。なお、「判 別・抽出結果の図面等」については、林野庁にて頻度高く利用する地図出力フ ォーマットをヒアリングして、QGISのレイアウトマネージャーにて、テンプレ ートを用意しておいて、載せたい地図として想定される山地災害防止タイプ (土砂流出・崩壊防備エリア)に変更する林小班を選択すると、自動的に貼り 付けられるようなプロセスとした。 (4) 搬出方法を特定する必要のある林小班抽出ツール開発

現状の機能類型区分が「山地災害防止タイプ(土砂流出・崩壊防備エリア)」に該当する林小班及び上流域と重なるタイプとして抽出した林小班について、各林小班の平均傾斜を算出し、平均傾斜35度以上の林小班を判別する。図26に算出方法と手順を示す。

図 26 平均傾斜算出方法·手順

a. QGISによる傾斜角度算出、ラスター画像作成

ダウンロードし、GeoTiff 形式に変換した 5mDEM データを再度用いる⇒メニ ューの「プロセシング」の「ツールボックス」の「GRASS」クリック__ 「ラスタ」クリック__「r.slope.aspect」クリック⇒「傾斜(slope)の出 カ」のみチェックして実行⇒「slope」ファイルがレイヤー領域に追加される (図 27 参照)。

図 27 ツール「r.slope.aspect」のパラメータ設定と作成された傾斜角度のラ スター画像

また、35 度以上の斜面がどのくらいあるのかについての確認する必要があ る場合を想定して確認手順を明確化した。まず、「slope」のプロパティクリ ック⇒レンダリングタイプを「カテゴリ値パレット」選択、カラータイプを 「spectral」選択後、カラーランプを反転をクリックする⇒分類により最小値 から最大値整数値ごとにカラーを配置する。さらに、傾斜35 度以上を抽出す るために、値の34 以下を選択し、マイナスのボタンをクリックして削除する ⇒再度、カラーランプを選択、反転して、35 度を青色から最大値を赤色となる カラーで再表示する。図 28 に上流域に傾斜 35 度がどの程度占めるのかについ ての試算例を示した。

図 28 上流域内の傾斜 35 度以上の占める割合例

なお、QGIS 3.24 では、上記の「r.slope.aspect」が動作不可のことから、 プロセシングツールボックスの「ラスタ地形解析」__「傾斜(slope)」をク リックし、Z 係数を 1 \Rightarrow 0.000011 に変更して実行すると、2 次メッシュの tiff 変換画像全体でも傾斜(slope)のラスタ画像を作成することができる。

b. ポリゴン内の平均傾斜算出

(1)で作成した崩壊土砂流出危険地区の上流域を例に、そのポリゴン内の平 均傾斜角度を算出した。上記 a. で作成した「slope」ファイルと、平均傾斜を 算出したいポリゴン(崩壊土砂流出危険地区の上流域)をレイヤ領域に張り付 ける。⇒メニューの「プロセシング」の「ツールボックス」の「GRASS」クリ ック__「ラスタ」クリック__「ゾーン統計量」クリック⇒計算する統計量を希望に応じて選択⇒実行すると、平均傾斜を算出したいポリゴンの属性に選択した統計量が追加される。図 29 にゾーン統計量のパラメータ設定、図 30 に追加された属性データを示した。

パラメーター ログ		4	バーン統計量	
529677				h ~ 수급분분명 내 ~ 그 가
💕 merga_kiritori_slope [EPSG:6691]	•	•••	統計量を計算します。	外の単見機な机とフスク
- す象バンド				
バンド 1 (Gray)		-		
う析ゾーンのベクタレイヤ				
🏳 gunma_ryu449-022 [EPSG:6691]	*	•••		
出力するカラム名の接頭辞				
-				
+算する統計量				
3 オプションが選択されました		•••		
	0%			キャンセル
「ッチゴロセフで実行」			実行し、問じる	

図 29 ゾーン統計のパラメータ設定

Q	gunma_449-02	2 :: 地物数 合計: 1、	フィルタ: 1、 選択: 0				
/	Z 🖥 🕄	📆 🖬 🛰 🖻	🖹 l 🔄 🗮 📡) 💊 🍸 🔳 🍣	P 🖪 🖪 🛛	/ 🔛 🚍 🗐	Q.
	fid	DN	_count	_sum	_mean	_min	_max
1	1	100	9817.000000000	391882.6264173	39.91877624706	0.760205745697	65.68394470214

図 30 上流部ポリゴンファイルの属性データに追加された平均傾斜角度等

c. 抽出した林小班の平均傾斜算出と35度以上抽出

平均傾斜角度を算出する国有林の林小班を整理すると以下の通りである。以下について、前述のb.の方法にて、林小班別に平均傾斜を算出する。

・機能類型が「山地災害防止タイプ(土砂流出・崩壊防備エリア)」の全ての 林小班

- ・山地災害危険地区の「山腹崩壊危険地区」、「地すべり危険地区」と重なる
 機能類型区分が「快適環境形成タイプ」及び「水源涵養タイプ」となっている林小班
- ・土砂災害警戒区域の「地すべり」、「急傾斜地の崩壊」と重なる機能類型区 分が「快適環境形成タイプ」及び「水源涵養タイプ」となっている林小班
- ・山地災害危険地区の「崩壊土砂流出危険地区」、土砂災害警戒区域の「土石 流」の『上流部』と、重なる機能類型区分が「快適環境形成タイプ」及び 「水源涵養タイプ」となっている林小班

平均傾斜角度を算出した林小班の中から、属性データの平均角度 35 度以上 をメニューの編集▶選択▶式による地物選択にて選択し、そのレイヤを右クリッ ク▶エクスポート▶選択地物の保存を実施することで、平均傾斜 35 度以上の林 小班のみを抽出することができる。

なお、国有林野約 758 万 ha の機能類型区分ごとの面積は、「山地災害防止 タイプ(土砂流出・崩壊防備エリア)」が 147 万 ha、「自然維持タイプ」が 171 万 ha、「森林空間利用タイプ」が 46 万 ha、「快適環境形成タイプ」が 0.2 万 ha、「水源涵養タイプ」が 394 万 ha となっている(令和3年度森林・ 林業白書より)。

d. 事業を計上している林小班を抽出

上記で抽出した 35 度以上の林小班(林野庁からの貸与用林小班区画データ (shp 形式))の属性データと、林野庁からの伐造簿データ(csv 形式)の項 目で一致する数値(林小班番号等)を用いて、林小班と伐造簿データを連結さ せる。次に連結された林小班のみを選択し、右クリックトエクスポートト選択地 物の保存を実施することで、搬出方法を特定する必要のある林小班を抽出す る。

ツールは、担当者が業務で使用しているパーソナルコンピュータ等にインス トールし、既存データ等を入力することにより、自動的に判別・抽出結果の図 面等が入手できる機能を最低限の仕様となるように開発した。なお、「判別・ 抽出結果の図面等」については、林野庁にて頻度高く利用する地図出力フォー マットを参考に、こちらにてQGISのレイアウトマネージャーにて、テンプレ ートを用意しておいて、載せたい地図として想定される搬出方法を特定する必 要のある林小班を選択すると、自動的に貼り付けられるようなプロセスとし た。図31に図面等の出力結果のサンプル例(北海道森林管理局内の搬出方法 を特定する必要のある森林(林小班)抽出事例)を提示した。

図 31 判別・抽出結果の図面等のサンプル例

(5) 判別・抽出ツールの実証及びマニュアルの作成

全国7箇所程度の地区において、開発したツールの機能について実証を行う とともに、必要に応じて改良を行う。なお、モデル地区は、都道府県単位で全 国各ブロック(北海道、東北、関東、中部、近畿・中国、四国、九州)から1 箇所以上を設定して実施する予定とした。

表2に実証候補地域、対象森林管理署等、選定理由等を整理した。なお、対 象地域等については、林野庁担当、各森林管理署等と調整の上、最終決定する ものとした。なお、林野庁との協議の結果、リモートにて実施することとなっ た。

表 2 実証対象候補地域、選定理由等

	北海道	東北	関東	中部	近畿・中国	四国	九州
実証候補 地区	石狩地方	青森県	群馬県	長野県	広島県	香川県	福岡県
実証候補 森林管理 署等	石狩森林 管理署	青森森林 管理署	利根沼 田森林 管理署	中信森林 管理署	広島森林 管理署	香川森林 管理事務 所	福岡森 林管理 署
選定理由	GISデー タより崩 壊土危度 た密度 い あり あり	山地災害 危険地区 数最上位 県(約 33%)	事前試 行対象 場所(み なかみ 町)	山地災害 危険地区 数最上位 県(約 63%)	崩壊土砂 流出危険 地区数最 上位森林 管理署 (162件)	高松市、 観音寺町、 あのう町 崩 、 出 の の り町 の り町 の り町 の り町 の り町 の り町 の り町	博辺壊流険32 り り

担当者が本事業により開発したツールを簡易に利用可能となるようツールの 利用マニュアルを作成した。作成の際は、林野庁担当との協議結果、実証での 各森林管理署等担当者からのヒアリング等を反映させた。なお、マニュアルは 本調査報告書とは別冊とした。

3 まとめ

上記(1)から(4)までに示した搬出方法を特定する必要のある森林(林小班)の抽出方法を、自動的に実施するQGISのプラグインツールを開発した(ツール名:災害リスク林小班抽出ツール)。このツールを、QGISのDesktop 3.16.16 with GRASS 7.8.5 にインストールすることで、山地災害危険地区の崩壊土砂流出危険地区及び土砂災害警戒区域の土石流の各上流域抽出、山地災害防止タイプ(土砂流出・崩壊防備エリア)に変更する区域抽出、搬出方法を特定する必要のある林小班抽出のタブを選択し、それぞれの該当するGISデータ等を入力するだけで、簡易に搬出方法を特定する必要のある森林(林小班)の抽出が実施できる。

図 32 災害リスク林小班抽出ツールの画面

なお、山地災害危険地区の崩壊土砂流出危険地区のGIS データは、北海道森 林管理局、東北森林管理局、九州森林管理局内に限り、一部のラインデータに 不具合が見つかったことから、修正するともに、各森林管理局に対応した平面 直角座標系に変換及びジオメトリ修復したファイルを別途 DVD の「災害リスク 林小班抽出ツール用 GIS データ」に格納してある(その他の森林管理局の GIS データも投影変換及びジオメトリ修復済み)。また、山地災害危険地区の地す べり危険地区及び山腹崩壊危険地区の GIS データについても、各森林管理局に 対応した平面直角座標系に変換及びジオメトリ修復したファイルとして格納し てある。

さらに、国土数値情報ダウンロードサービスサイトからダウンロードする土 砂災害計画区域の GIS データについては、事前にダウンロードし、各森林管理 局に対応した平面直角座標系に変換及びジオメトリ修復したファイルを同じく DVD の「災害リスク林小班抽出ツール用 GIS データ」に格納してある(利用方 法、フォルダ構造等の詳細は、DVD 同封の災害リスク林小班抽出ツール用 GIS データ説明書参照)。

また、森林計画区が含まれる数値標高モデル(DEM データ)を、基盤地図情 報ダウンロードサービスサイトからダウンロードする際に、どのメッシュ番号 を選択するのを特定するのが難しいことから、各森林計画区が含まれるメッシ ュ番号がわかるように、QGIS で利用できる各森林計画区のメッシュ GIS データ を作成した。別途 DVD「森林計画区別林小班・メッシュ GIS データ」に格納し てある(利用方法、フォルダ構造等の詳細は、DVD 同封の森林計画区別林小 班・メッシュ GIS データ説明書参照)。

林地保全に配慮した施業が特に必要な国有林野の 判別ツール整備事業

令和5年1月

判別ツール整備事業共同事業体

アイオーネイチャーラボ株式会社 〒274-0816 千葉県船橋市芝山 6-61-4-305 TeL. 090-3103-4850 株式会社 MIERUNE 〒060-0031 北海道札幌市中央区北 1 条東 4 丁目 1-1 サッポロファクトリー1 条館 3F 株式会社プルースコンサルティング 〒136-0074 東京都江東区東砂 8-25-22-605 TeL. 03-3699-4208 FAX. 03-3699-4898